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1 Introduction

Impedance boundary conditions (IBCs) relate electric and magnetic fields tangential to
smooth material surfaces of highly conductive objects. The usage of IBC models in
electromagnetic field simulators eliminates the need to model a scatterer's intemal fields,
thereby leaving only exterior scattering problems to be solved. In this paper, the time
domain integral equation (TDIE) solver for analyzing scattering from nontransparant IBC
objects reported in [1] is extended to analyze scattering from electrically thin, and
potentially penetrable IBC surfaces [2]. Two coupled TDIEs that are very similar to
those in [1] are established and solved by marching-on-in-time (MOT). The proposed
scheme is verified by means of several numerical examples.

2 TDIE solvers for thin scatterers with IBC

Consider a thin, surface-like scatterer S of thickness d, composed of a homogeneous
material with frequency independent permeability ,u, permittivity c, and conductivity
a-, residing in free space with permittivity co and permeability ,u0, and excited by a
bandlimited incident field (Einc (r, t), Hinc (r, t)) with spectral support confined to
[Wmin,)maxl and virtually zero for any point on the scatterer when t <0. Upon
excitation by the incident field, S produces the scattered field (Esca (r,t),Hsca (r, t))
The total field (Et0t(r,t),Htot(r,t)) comprises the incident and scattered fields. In
what follows, it is assumed that d <<«min = 2rc / max, where c =1/I oyo. If for
all angular frequencies 0 C [0)min ,6max], l>> 60O (with c' = e + oI(jw0)) and
S 's minimum radius of curvature is much larger than the skin depth 3 = ,2 /pac, then
the tangential components of the total fields on the scatterer's opposite interfaces
approximately satisfy the following boundary conditions:

-(r+) x n(r+) x Ett (r+,t). (A(t) B(t)] fi(r+)xHtt(r+,t) r+ e S+ 1)
L-fi(r- )x f(r-)xEtt(r-,t) LB(t) A(t) fi(r-)xH'°t(r-,t)' S-'

Here, S+ and S- denote S's "upper" and "lower" interfacesto free space (Fig. l(a)),
ii(.) is the outward pointing normal unit vector, "* " denotes temporal convolution, A(t)
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and B(t) are the inverse Fourier transforms of A(@) = -jiicot(,/d) and
B(w)=-jqcsc(/Jd), respectively; j=lI, = , and fl=coJT The
boundary conditions in (1) are the time domain counterparts of the frequency domain
conditions presented in [2]. When d is very large compared to the skin depth, the
boundary conditions in (1) reduce to the regular IBCs in [1]; on the other hand, when d
is so small that /3d -e 0, they become equivalent to the regular conducting sheet model.
Integral equations that permit reconstruction of (Esca (r,t),Hsca (r,t)) are established
by invoking the equivalence principle (Fig. 1(b)), viz. by describing
(Esca (r,t),Hsca (r, t)) in terms of equivalent electric and magnetic currents on S+ and
S-. However, since d <<« ,in, the scattered field (Esca (r,t),Hsca (r,t)) can be
described by the superposition of these equivalent currents on both interfaces, viz. as
produced by electric and magnetic current J(r,t) = n(r+)x Htot(r+,t)+ i(r-)x Htt(r-,t)
and K(r,t)=EtOt(r+,t)xin(r+)+Ett(r-,t)xfi(r-) with r=(r+ + r- )/2 on S
Using (1) and fi(r+) = -in(r), the following coupled TDIEs in terms of J(r,t) and
K(r,t) are arrived at:

a aR,,()tJ(r,t)} = n(r)x fi(r)x { J}(r,t)-9f7(K}(r,t)+ a Einc (r, t)at a~~~~~~~~~~~~~~t
a a iL~'i~~t+* (2)

-a (G, (t)*K(r,t)) = fi(r)xnfi(r)x Co-{ K}(r,t)+ 9f7{J}(r,t)+ ,a Hinc(r,t)}

Here the operators £ and X are

jX(r,t)}(rt) = -PO I -c2VVJ *X(r',t)* G(I r - r' j,t)dr'

X I{X(r,t)} (r,t)= a V x-ffX(r',t) * G(I r - r' I,t)dr'
at s

where -ff stands for principle value integration, I = xx + 55 + ii, and the scalar Green
function is G(r,t)=t3(t-r1c)!4;rr. The surface impedance R, (t) and admittance

G,(t) are the inverse Fourier transforms of (a)= +B(w)]/2 and

(9()) = 1/[2A(ao)- 2B(w)], respectively The TDIEs in (2) are very similar to those
in [1]. They can be solved using the same MOT scheme as detailed in [1]. Also as in
[1], the evaluation of the two temporal convolutions involving RI(t) and G,(t) can
be accelerated by a recursive convolution technique. However, additional care is
needed in that Rs (t) and G5 (t) do not have closed form expressions and hence have
to be obtained by means of numerical inverse Fourier transformation.

3 Numerical examples

In this section, two numerical examples are presented to validate the proposed scheme.
In the first example, the scatterer is a penetrable spherical shell with outer radius 1.4 m.
The shell is centered at the spatial origin and has material parameters e = Co and
,u = p,o, various conductivities and thicknesses are considered. The incident field is
parameterized as
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Einc(r,t) = pcos[2orfo(t- r *k/c -tp)]exp[-(t- r* k/c -tp)2 /2v2],

where p - , k=z , fo =100 MHz, v = 0.95 x 108 s and tp = 5.72x10 s
There are 10592 spatial and 1000 temporal discrete unknowns respectively, and the time
step size is 3.33x 10-10 s . The MOT results are Fourier transformed to the frequency
domain and compared to the analytical results. In Fig. 2, the radar cross section (RCS)
is plotted at three frequencies: 80 MHz, 100 MHz, and 120 MHz. Figures 2(a) and 2(b)
show the RCS data in the x-y and y-z planes, respectively, when a = 10 S/m and
d = 0.005m = 0.3 ldo with 60 as the skin depth at frequency fo. Figures 2(c) and 2(d)
show the same data but for a- = 105 S/m and d = 0.00005m = 0.316oi. Figures 2(a) to
2(d) reveal that the TDIE solver generates correct results over a wide range of
conductivity values. Next, scattering from a two-plate scatterer shown in Fig. 3(a) is
analyzed. The incident field is the same as that in the first example except that p = y
and k = sin(7r/6)i + cos(z/r6)z. The scatterer has material parameters c=go,
u = u0, a = 10 S/m and d = 0,005m = 0.31lSo. There are 5520 spatial unknowns on
each plate, and the TDIE solver is run for 1000 time steps with time step size
3.33x 10-10 s. For comparison purposes, this problem is also analyzed using a finite
difference time domain (FDTD) simulator [3J that incorporates the IBCs in (1). Figures
3(b) and (c) show the equivalent current Jy and Kx at one point on the lower plate
specified by (1.5333, 1.5333,0) m. There is an excellent agreement between the MOT
and FDTD waveforms. The time domain results from the MOT and FDTD are both
Fourier transformed to the frequency domain, and the RCS in the y-z plane are compared
in Fig. 3(d) at three frequencies: 80 MHz, 100 MHz, and 120 MI-lz. The RCS results
from the MOT and FDTD simulations match each other very well.
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(a) The original problem (b) An equivalent problem to that in (a)

Figure 1: Illustration of the scattering problem ofconcem
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Figure 2: Numerical results for the scattering from spherical shells (d = 0.3 lS5)
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Figure 3: Numerical results for the scattering from a two-plate scatterer
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