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This paper investigates the optical bound states in the continuum (BIC) supported by a slotted high-contrast grating
(sHCG) structure. The sHCG structure consists of a periodic array of silicon ridges with a slot in each ridge. Given
that the BICs are perfectly confined, their spectral locations are identified using a finite-element method formulated
from a generalized eigenvalue problem. The real eigenvalues represent the wavelengths of BIC modes and the as-
sociated eigenvectors correspond to the electric field distributions. In the spectral and angular vicinity of the BICs,
we studied the leaky waveguide modes using the rigorous coupled-wave analysis. The combination of the full-wave
eigenvalue solver and the coupled-wave analysis provides an ideal setting to investigate the optical BICs of periodic
structures for various applications. The simulation results show, for example, that the sHCG structures can support
symmetry-protected bound states with a zero in-plane wave vector as well as high-quality-factor (high-Q) resonances
for both TE and TM polarizations. By adjusting the slot, we can turn the BIC mode into high-Q modes and
determine the linewidth of the mode by the degree of asymmetry. © 2016 Optical Society of America

OCIS codes: (050.5298) Photonic crystals; (050.2770) Gratings; (140.4780) Optical resonators.
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1. INTRODUCTION

Dielectric slabs with periodic sub-wavelength features, such as pho-
tonic crystal slabs, guided-mode resonance filters, and high-
contrast gratings (HCG), have attracted considerable attention
for their fascinating optical properties caused by the modulation
and confinement of light [1–7]. Previous studies carried out on
these devices have demonstrated numerous applications in high-
performance optical filters [8–12], solid-state light sources [13,14],
nonlinear optics [15–19], and biomolecule detection [20,21].
Among the grating-patterned slabs, the HCG structure, built upon
a silicon-on-insulator substrate, is particularly interesting, owing
to its extraordinary optical properties and compatibility with
the complementary metal-oxide semiconductor process [22]. As
reported by Mateus et al. [23] and Shokooh-Saremi and
Magnusson [24], a HCG device allows broadband reflection with
a reflectivity of more than 99% in the near-infrared wavelength
regime. Following the demonstration of broadband reflection, re-
cent studies have shown that a HCG device also exhibits Fano
resonances with a high-quality factor (Q-factor). In 1929, von
Neumann andWigner first proposed the possibility of BICs based
on potential engineering [25]. The possibility was also considered
by Stillinger and Herrick [26]. More recently, Yoon et al. numeri-
cally investigated the TM-polarized optical bound states in the
continuum (BIC) for a one-dimensional (1D) silicon grating [27].

The existence of a perfectly confined optical mode within
the radiation continuum was shown using a parallel dielectric
grating [28], 1D periodic array of dielectric rods and spheres
[29,30], and a 2D photonic crystal slab [31–36] that supported
a scattering resonance with a vanishing linewidth. A recent
seminal work by Hsu et al. experimentally demonstrated the
BICs of a 2D Si3N4 photonic crystal slab [37]. Later, layered
sub-wavelength nanoparticles were numerically designed to
achieve the BIC in three-dimensional open scattering systems
[38]. For these devices, the optical bound states provide an ideal
confinement of light in the continuum of the free-space light
cone. Although the BICs do not radiate, the high-Q modes
with quasi-embedded eigenvalues in the close vicinity of the
BICs are particularly interesting, owing to their many potential
applications in, e.g., optomechanics, nonlinear optics, cavity
QED, and biomolecule detections. With regard to the
HCG, the BICs play an important role in determining the
characteristics of the radiative high-Q resonances. However,
the relations between the broadband reflective modes, high-
Q modes, and BICs have not yet been systematically studied.

This paper investigates the TE- and TM-polarized BICs and
high-Q resonance modes of a silicon-based slotted HCG
(sHCG). As shown in Fig. 1, the sHCG has a rectangular nano-
slot cut into each ridge of the grating. The position of the slot in
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the ridge can determine the resonant characteristics of the
device. Since the slot can be fabricated along with the HCG
structure using a lithographic process, the proposed structure
is ready to be manufactured. Although previous studies used
rigorous coupled-wave analysis (RCWA) or a finite-difference
time-domain method to identify BICs in an asymptotic man-
ner [27], none of these studies directly calculated the eigenfre-
quency of the resonance modes that do not interact with the
radiation continuum. Here, we employ a finite-element
method (FEM) to solve the eigenvalue problems for the peri-
odic structures, and consequently determine the resonance
wavelengths (λr) and the associated mode distributions. The
eigenvalue analysis shows that the BIC wavelengths increase
proportionally with an increasing grating period and that the
number of BICs increases with an increasing sHCG thickness.
To more completely understand the phenomena associated
with the BICs, we calculated the spectral and angular reflec-
tance of 1D sHCG structures. Furthermore, we show that
breaking the symmetry in the grating design produces the tran-
sition of a BIC mode to a high-Q mode.

This paper is organized in six sections. Section 2 specifies the
sHCG structures and Section 3 describes the numerical methods
used to analyze and simulate the phenomena of interest.
Section 4 describes the bound states of the 1D sHCG device
for two different polarizations. Section 5 demonstrates the pos-
sibility of forming asymmetric sHCG structures to turn BICs
into high-Q resonances. Section 6 provides concluding remarks.

2. DEFINITIONS, PHENOMENOLOGY, AND
CHARACTERIZATION TECHNIQUES

A. sHCG Structure and Physical Principles

The sHCG structure used in this study consists of a periodic
pattern made of silicon and formed on a 3-μm-thick SiO2

buffer layer. The main geometric parameters are the grating
period (Λ1D), grating width (wg ), slot width (ws), nanoslot off-
set from the grating center (d s), grating-layer thickness (tg ), and
duty cycle (η � wg∕Λ), as depicted in Fig. 1. For the symmetry
protected structure, the slot stands at the middle of the ridge,
which d s � 0. The period of 1D arrays is smaller than the free-
space wavelength λ. The thin device layer of silicon can be
patterned by lithography, followed by a reactive-ion etching
process [39]. Crystalline silicon is a suitable material to fabri-
cate high-Q optical devices because it is transparent in the
near-infrared regime, with a negligible extinction coefficient
κ < 0.001 and a large refractive index n � 3.477. A plane-
wave excitation beam is shone on the device from the grating
side. As shown in the schematic view of the sHCG devices
(Fig. 1), the incident angle θi is measured from the normal
of the grating surface. Incident plane waves with their electric
field polarized parallel or perpendicular to the grating bars
are described as having transverse-electric (TE) or transverse-
magnetic (TM) polarizations, respectively.

Optical phenomena supported by HCGs and their under-
lying principles have been described previously [27,40–43].
Briefly, a HCG structure can be engineered to display strong
broadband reflection and transmission, and narrowband
high-Q resonances. The underlying principle of guided-mode
resonance can be applied to understanding the resonances.

For guided-mode resonance, incoming light is coupled to the
in-plane waveguide mode via the grating modulation with the
in-plane wavevector:

k∥ � x̂k0 sin θi � x̂Gx; (1)

where k0 � 2π∕λ is the free-space wavenumber and Gx �
2mπ∕Λ with an integer m. The in-plane guided wave is scat-
tered back into the continuum by the grating, and thus behaves
as a leaky waveguide mode [44]. The constructive interference
of the backward-scattered light with the zero-order reflection
achieves a high-efficiency reflection. Meanwhile, the destruc-
tive interference of the forward-scattered light with the zero-
order transmission produces a transmission minimum. The
BIC characteristics can be simulated using electromagnetic sim-
ulations as discussed below.

B. Numerical Characterization Techniques

RCWA and the finite-difference time-domain method have
previously been used to study HCG devices and photonic crys-
tals [27]. These methods can simulate the optical phenomena
that occur in a structure in response to excitation, and yield the
reflectance, transmittance, and near-field distribution that can
then be used to guide nanostructure design. Because these
methods cannot find non-radiative BICs directly, we developed
a generalized eigenvalue problem using an FEM-based solver to
find all the BICs supported by the sHCG structure. The FEM
simulation model included only one period of the sHCG struc-
ture. The periodic boundary condition in the x-direction,
together with the perfectly matched layers in the z-direction,
defined the simulation domain in the x–z plane. The simula-
tion domain was discretized using a triangular mesh.

By basing the finite-element analysis on the electric-field
discretization, the variational problem that is equivalent to
the wave equation (source-free) led to a generalized eigenvalue
problem [45]. By solving the generalized eigenvalue equation,
the eigenvalue solver yielded the eigenvalues and eigenvectors,
which represent the resonance wavelength and electric field,
respectively. Only the real eigenvalues correspond to the bound
states with a radiative coupling coefficient of zero (κ � 0). For
the sHCG structure shown in Fig. 1(a), we used the eigenvalue

Fig. 1. Schematic of 1D sHCG structure on a SiO2 substrate (not
to scale). 1D SHCG consists of an array of slotted nano-ridges. Device
is excited by a plane wave at an incidence angle of θi. TE- and TM-
polarized modes correspond to the modes with the electric field com-
ponent parallel and perpendicular to the grating lines, respectively.
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solver to determine the BICs for different device geometries.
Appendix A provides the details and equations involved in
the FEM analysis.

After finding the BICs, we used the RCWAmethod to study
the BICs in an asymptotic manner. The RCWA algorithm is
based on the Fourier expansions of the electromagnetic fields
and the permittivity profiles (ϵr�x; y�) in each layer of a periodic
structure. The diffraction efficiencies for each harmonic in the
Fourier expansion were calculated to determine the reflectance
or transmittance. The analysis was carried out using a commer-
cial RCWA software package (DiffractMOD, Synopsis). The
RCWA simulation was set up to analyze a unit volume of
the HCG structures, and periodic boundary conditions were
applied to define the calculation domain, as labeled by the
dashed box in Fig. 1. Twenty harmonics were used to expand
the permittivity and fields along the x-direction. The dispersive
and complex refractive indices of crystalline silicon,
n�λ� � nsi�λ� � iκsi�λ�, were taken from Palik’s handbook
[46], where nsi � 3.486� i0.001 at λ � 1550 nm. The re-
flection and transmission spectra were calculated in the desired
near-infrared wavelength range.

3. EIGENVALUE ANALYSIS OF SILICON-BASED
sHCGs

The eigenvalue solver was applied to study how the geometric
parameters of the silicon grating affect the BICs and illustrate
the principles behind the sHCG-supported BICs. Material loss
was neglected by assuming κsi � 0, leaving out-of-plane scat-
tering as the only loss mechanism. As a result, the real eigen-
value solutions correspond to the perfectly confined BICs and

those with an imaginary part are associated with the modes cou-
pling with the radiation continuum. To characterize resonances
supported by sHCGs with different grating periods, we consid-
ered sHCG structures with a thickness, duty cycle, slot width of
tg � 500 nm, η � 50%, and ws � 50 nm, respectively. As for
the periodic boundary condition described in Eq. (A3), the
phase shift was set to ϕ � 0, representing the normal incidence
case with θi � 0°. The grating period ranges from Λ � 500 to
1800 nm with the increment of 50 nm. Eigenvalues were
solved for each grating period, but only the real eigenvalues
are plotted in Fig. 2(a) as the BIC resonant wavelengths.
The eigen-wavelengths can be grouped into three branches.
The two branches shown in black represent the TE modes
(TE10 and TE11) and the one shown in red is the TM10 mode.
The modes are labeled as TEmn (or TMmn), where the integers
m and n are determined by the distribution of the longitudinal
component of the field along the x- and z-axes, respectively.
The polarizations of these modes were determined by the elec-
tric-field components given by the eigenvectors. Here, the high
refractive index grating-patterned silicon slab provides the in-
plane confinement. The Bragg condition gives the resonance
wavelength,

λ � 2neffΛ∕m; (2)

where neff is the effective waveguide index and m is a positive
integer that denotes the order of diffraction. According to the
Bragg condition, the resonance wavelength increases with the
grating period, in agreement with the simulation results shown
in Fig. 2(a).

Figure 2(b) shows the eigen-wavelengths calculated as func-
tions of the grating thickness when the grating period and duty

Fig. 2. Eigen-wavelength calculated as a function of (a) the grating period, (b) the grating thickness, and (c) the slot width. (d) Eigenvectors of the
TE10, and TE11 modes when Λ � 880 nm, η � 50%, and ws � 50 nm labeled by the blue line. For the TE modes, the Ey components at the
corresponding wavelength 2012 nm and 1519 nm are plotted in the upper and lower panels, respectively. (e) Eigenvectors of the TM10 mode. Ex
and Ez components of the TM10 mode are shown in the top and lower panels at λr � 1459 nm.
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cycle are fixed at Λ � 880 nm and η � 50%, respectively. The
grating thickness increases from tg � 50 to 1200 nm with the
increment of 50 nm. The number of BIC modes can be

estimated as #BIC � 2tg
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2avg − n2cladding

q
, where navg can be

estimated using the average refractive index of the patterned
slab. As shown in Fig. 2(b), the number of BIC modes increases
with the increasing grating thickness. Single-mode operation
occurs when the grating thickness is less than 200 nm. For each
mode, the BIC wavelength shifts to the red end as the grating
thickness increases. Figure 2(c) shows the eigen-wavelengths
calculated as a function of the slot width ranging from 10
to 100 nm. As shown in the figure, the BIC wavelength de-
creases when the slot widens for all three modes (TE00,
TE11, and TM10). The blueshift of the resonant wavelength
can be attributed to the decrease of the averaged refractive index
when the slot becomes wider.

Next, the field distributions of the BICs were studied using
the eigenvectors associated with the real eigen-wavelengths. To
this end, we considered a 1D sHCG device with grating period
Λ � 880 nm, grating thickness tg � 500 nm, and slot width
50 nm. This particular device supports three BICs at
λr � 1455.1, 1558.4, and 2018.7 nm, respectively. The modes
at λr � 1455.1 and 2018.7 nm are TE-polarized modes with
only the Ey components shown in the top and bottom panels of
Fig. 2(d). The eigenvectors of the Ex and Ez components are
trivial, and are therefore omitted from the figure. The mode at
λr � 1558.4 nm is a TM-polarized mode with its Ex and Ez
components shown in Fig. 2(e). Being a TMmode, its Ey com-
ponent is trivial compared to the Ex and Ez components. The
resonant field distributions indicate that the order of Bragg
diffraction is m � 2. We note that the distributions of the res-
onant fields are antisymmetric and these modes can be consid-
ered to be symmetry-protected bound states. The coupling to
the continuum in the surface-normal direction is forbidden be-
cause of symmetry incompatibility with the external radiation,
whose tangential field components are symmetric with respect
to the mirror-symmetry axis at x � 0. The BIC mode is dis-
tinct from the resonance of distributed-feedback (DFB) cavities
[47] because they reside inside the light cone of a photonic
band diagram, which is shown in the following section.
Moreover, we sought the real eigenvalues of the sHCG with
the incident light at an oblique angle (0° < θi < 90°). For
the structure shown in Fig. 1(a), real eigenvalues are only
present when θi � 0°.

4. BROADBAND, BIC, AND HIGH-Q MODES

The sHCG device can be designed to exhibit a single BIC mode
when tg < 200 nm. To illustrate the couplings between the
broadband reflection, the high-Q mode, and the BIC, we
selected a design that supports both TE and TM modes. The
device consists of a grating with period Λ � 880 nm, thickness
tg � 500 nm, and slot width ws � 50 nm. As shown in
Figs. 2(a) and 2(b), there should be two TE modes and one
TM mode. We first studied the TM mode. The calculated
reflection spectra are plotted as functions of the incident angle
in Fig. 3(a). The wavelength and incident angle range from
1200 to 2200 nm and from −15° to 15°, respectively. The

TM-polarized resonances appear as reflection peaks. In con-
trast, the HCG structure without the slot exhibits the TM-
polarized resonances as narrowband dips [48]. In Fig. 3(a),
the region indicated by the red box contains the BIC and
high-Q modes. To elaborate on these phenomena, the
reflection spectra calculated for θi � 0°, 0.5°, 1°, 2°, and 5°
are compared in Fig. 3(b). The resonant linewidth decreases
significantly as the incidence angle approaches 0°. For example,
when the incident angle is 1°, the resonance linewidth is
1.1 nm, which corresponds to a Q-factor of 1305. In compari-
son, the Q-factor increases to 4766.6 nm when θi is reduced to
0.5°. The vanishing of the linewidth at θi � 0° implies the
existence of BIC. As shown in Fig. 3(b), the BIC mode locates
at λr � 1458 nm in the spectrum, in agreement with the
eigenvalue analysis. Because the TM mode displays a weak re-
flection in the spectral range of interest, the high-Q resonance
modes are displayed as peaks with a high reflectance at the
resonant wavelength.

The near-field distribution of a representative high-Q mode
is calculated using the RCWA simulation and shown in
Fig. 3(c). Here, the near-field distributions of the Ex , Ez ,
and Hy components are associated with the high-Q resonance
(Q-factor � 1.3 × 105) at λr � 1458.3 nm and θi � 0.01°.
The color axis expresses the amplitudes of the electric and mag-
netic fields, normalized by that of the incident field. As seen from
the field distributions, the maximum field enhancement factor is
1500. The enhancement factor of the field intensity is calculated
by averaging the electric field intensities within the sHCG area
(−Λ∕2 < x < Λ∕2 and 0 < z < tg ). As a result, the averaged
enhancement factor of the field strength is approximately
1.7 × 105. The distributions of the tangential components
(Ex and Hy) are asymmetric. The mode can be excited because
the asymmetric nature of the incident wave at θi � 0.01°.

Having characterized the TM mode, we used the same ap-
proach to study the TE-polarized modes. Figure 4(a) shows the

Fig. 3. TM-mode characteristics. (a) Calculated reflection spectra
in the wavelength range 1200 to 2200 nm, for incident angles ranging
from −15° to 15°. (b) Reflection spectra calculated for θi � 0°, 0.5°, 1°,
2°, and 5°. The corresponding linewidths for each angle are plotted in
the inset. (c) Near-field distributions of Ex , Ez , and Hy components
for the high-Q resonance (Q-factor � 1.7 × 105) at λr � 1458.3 nm
and θi � 0.01°.
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reflection spectra of the TE modes plotted as a function of the
incident angle, which ranges from −15° to 15°. As shown in
Fig. 2(b), there are two TE-polarized BIC modes (TE10 and
TE11) when the silicon grating thickness is 500 nm. In
Fig. 4(a), the regions of the TE resonances are outlined by
the black (TE10 mode) and white boxes (TE11 mode), respec-
tively. Figures 4(b) and 4(c) summarize the reflection spectra
for θ � 0°, 0.5°, 1°, 2°, and 5° for the TE10 and TE11 modes,
respectively. Like the TM resonances, the TE modes also dis-
play as peaks in the reflection spectra. Also, the TE resonance
linewidth decreases as the incidence angle approaches 0° and
disappears at θ � 0°. This phenomenon indicates the existence
of the BICs at λr � 1519 and 2012 nm. The near-field distri-
butions of a representative high-Q mode for two TE modes are
plotted, as obtained using the RCWA simulation. Figure 4(d)
shows the amplitude distribution of the Ey, Hx , and Hz
components that are associated with the high-Q resonance

at θi � 0.01° for the TE11 mode at λr � 1519.7 nm (top
row) and the TE10 mode at λr � 2012.9 nm (bottom row).
The tangential components (Ey and Hx) of these mode are
clearly asymmetric. The near fields of both TE modes are sig-
nificantly enhanced relative to the incident wave.

5. ASYMMETRIC sHCGs

In the previous section, we showed that the transition from a
BIC mode transit to a high-Q resonant mode when the sHCG
is illuminated from an off-normal direction (0° < θ < 1°).
Recent research demonstrated an approach to transform the
perfectly confined mode to high-Q resonances using non-
equivalent sub-cells in one period of the grating [49]. Since
the BIC mode with kx � 0 is symmetry-protected, an asym-
metric design of the sHCG can be exploited to eliminate
the BIC and tune the high-Q resonant modes. This section
demonstrates another approach that allows precise control of
the resonance using the slot position. As shown in Fig. 5(a),
we shift the slot from the center of the ridge to the right
(or left) side with an offset of d s. The shift of the slot results
in an asymmetric sHCG structure. As a result, the symmetry-
protected BIC mode disappears, and all the eigenvalues are
complex. The resonant wavelength and the Q-factor are asso-
ciated with the shift distance. Using the RCWA simulation, we
studied the reflection characteristics of the asymmetric sHCG
with the slot at off-center positions. Figure 5(b) shows the re-
flection spectra for d s � 1, 5, 10, 20, and 40 nm, respectively,
for the TM10 mode. The incident angle is kept at θi � 0°, and
the slot width is set as ws � 50 nm. The resonant wavelength
increases while the position of slot moves. It is clear that the
resonant linewidth significantly increases as the slot approaches
the edge of the ridge. The device with the d s as small as 1 nm
exhibits a linewidth of 0.004 nm and a Q-factor of 3.6 × 105.
Increasing d s to 5 nm broadens the resonant linewidth to 1 nm
(Q-factor of 1451). To elaborate how the resonance character-
istics of the asymmetric sHCG resonator can be tuned, we sum-
marized the Q-factor as a function of slot position in Fig. 5(c).
As shown in the figure, the Q-factor decreases exponentially
when the slot shifts toward the edge of the ridge.

We also used the eigenvalue solver to study the resonant
wavelength and loss of the asymmetric sHCG devices. In
the case of d s ≠ 0, all the eigenvalues are complex numbers.
The real part of the complex number is the resonant wave-
length of the asymmetry sHCG. Figure 6(a) shows the calcu-
lated eigen-wavelength as a function of the slot position. The
resonant wavelengths of both TE01 and TE11 modes decrease
the slot moves away from the center of the ridge. On the other
hand, the resonant wavelength of the TM10 mode increases
while increasing the d s. The breaking of device symmetry in-
troduces radiation loss, which depends on the slot position.
The radiation loss can be calculated using the imaginary part
of the eigenvalues when d s ≠ 0. Figure 6(b) shows the change
of radiative loss as a function of the slot position. For all three
modes, the loss is strong when the sHCG has the highest degree
of asymmetry, in which the center of the slot will be located at
wg∕4 � 110 nm. Thus, the loss is highest when d s is approx-
imately 85 nm. The BICs exist with zero radiative loss when the
slot is located at the middle of the ridge (d s � 0) and the

Fig. 4. Characteristics of the TE-mode. (a) Calculated reflection
spectra in the wavelength range of 1200 nm to 2200 nm as a function
of incident angles from −15° to 15°. (b) Reflection spectra calculated
for θi � 0°, 0.5°, 1°, 2°, and 5° for the modes around 2012.9 nm.
(c) Reflection spectra calculated for θi � 0°, 0.5°, 1°, 2°, and 5° for
the modes around 1519.7 nm. Corresponding of linewidth for each
small angle shown in inset. (d) Near field distributions of Ey, Hx , and
Hz components with high-Q resonances (Q-factor � 4 × 107) at
λr � 2012.9 nm and θi � 0.01° for TE10 (top) and TE11 (bottom)
mode, respectively.
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boundary of the ridge (d s � 84.3 nm). Figure 6(c) shows the
reflection spectra when d s � 80, 120, and 140 nm, respec-
tively. When d s increases beyond 80 nm, the resonant line-
width starts to decrease.

6. CONCLUSIONS

Optical bound states and the associated high-Q resonant modes
supported by silicon-based sHCG structures were studied nu-
merically. Special attention was given to the FEM eigenvalue
solver, which is capable of finding the resonant wavelength
and the near-field distributions of the BICs. Our results show
that the number of bound states supported by a sHCG structure
is determined by the thickness of the silicon slab. Using the cal-
culated eigen-wavelengths, RCWA simulations were performed
to characterize the resonant modes that are spectrally and angu-
larly close to the BICs. The sHCG design investigated above
displays one TM-polarized and two TE-polarized BICs. The
TE- and TM-polarized resonances appear as narrowband peaks
in the reflection spectra. Because the BICs are perfectly confined
bound modes, they cannot be excited. The simulation of an
asymmetric sHCG structure demonstrates that the BIC mode
can be turned into a high-Q resonance, with the Q-factor being
controlled by the degree of asymmetry.

The BIC and neighboring resonant modes of the sHCG
structure can be applied to the construction of high-Q optical

resonators in the fields of optomechanics, nonlinear optics,
and cavity QED with a tunable Q-factor by changing the cou-
pling angle. They can also be used for refractive index-based
biomolecule detection. The numerical techniques presented
in this paper enable both source-excited and source-free assess-
ments of BICs in slabs with a patterned grating. Understanding
the phenomena above is an important step toward exploring
more complex mechanisms involving the couplings between
free-space fields, BICs, and high-Q modes.

APPENDIX A: GOVERNING EQUATIONS FOR
THE FEM EIGENVALUE SOLVER

The electric field in the sHCG structure satisfies the second-
order wave equation

∇ × μ−1r �∇ × E� − k20
�
ϵr �

iσ
ωϵ0

�
E � 0; in Ω; (A1)

and is subject to the following condition for a perfect electric
conductor and floquet boundaries:

n̂ × E � 0 on Γ1 (A2)

EF l
� eiϕEFr

on Γ2; (A3)

where Γ1 and Γ2 are the boundaries along the z- and x-axes,
respectively. In (A1), the relative permeability μr � 1, and

Fig. 5. Asymmetric sHCG structure. (a) Schematics of sHCG, where the position of slot is shifted from the ridge center by a distance of d s.
(b) Reflection spectra for the asymmetric grating with d s � 1, 5, 10, 20, and 40 nm. (c) The Q-factors are plotted as functions of d s.

Fig. 6. Resonant characteristics of the asymmetric sHCG structure. (a) and (b) Resonant wavelength and loss as a function of slot position for
TE10, TE11, and TM10 modes, respectively. (c) Reflection spectra for the asymmetric sHCG devices with d s � 80, 120, and 140 nm, respectively.
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σ and ϵr denote the relative permittivity and conductivity. In
(A3) EFr

and EF l
are the fields at x � 0 and Λ, respectively,

and the phase shift is given by ϕ � kxΛ � k0 sin θiΛ. Perfect
matching layers (PMLs) are applied along the z-direction to
absorb the outgoing waves. In the PML regions, the anisotropic
absorber model is used to create a reflection-free interface [50].
Then, by applying the variational principle, the solution to the
problem defined by (A1)–(A3) is equivalent to

F�E� � 1

2

Z Z
Ω
�μ−1r �∇ × E� · �∇ × E� − k20ϵ̄rE · E�dΩ: (A4)

To solve (A4), the electric field in the computation domain is
discretized using the triangular elements

Ee
t �

Xn
i�1

eetiN e
i and Ee

z �
Xn
i�1

eeziζei ; (A5)

where Ne
i �ζei � and eeti denote the vector expansion functions

and the corresponding expansion coefficients. The final discre-
tization of the variational problem (A4) amounts to a general-
ized eigenvalue problem�

Att Atz
Azt Azz

��
et
ez

�
� k20

�
Btt Btz
Bzt Bzz

��
et
ez

�
; (A6)

where A and B are complex matrices. Once the eigenvalues
of (A6) are solved, the eigen-wavelengths are calculated as
λr � 2π∕k0.
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